Neural networks for gas turbine engine diagnosing

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Networks for Gas Turbine Diagnosis

The present chapter addresses the problems of gas turbine gas path diagnostics solved using artificial neural networks. As a very complex and expensive mechanical system, a gas turbine should be effectively monitored and diagnosed. Being universal and powerful approximation and classification techniques, neural networks have become widespread in gas turbine health monitoring over the past few y...

متن کامل

Wireless Communication Networks for Gas Turbine Engine Testing

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any ...

متن کامل

Gas Turbine Engine Behavioral Modeling

This paper develops and validates a power flow behavioral model of a gas turbine engine with a gas generator and free power turbine. “Simple” mathematical expressions to describe the engine’s power flow are derived from an understanding of basic thermodynamic and mechanical interactions taking place within the engine. The engine behavioral model presented is suitable for developing a supervisor...

متن کامل

Using Safety Critical Artificial Neural Networks in Gas Turbine Aero-Engine Control

‘Safety Critical Artificial Neural Networks’ (SCANNs) have been previously defined to perform nonlinear function approximation and learning. SCANN exploits safety constraints to ensure identified failure modes are mitigated for highly-dependable roles. It represents both qualitative and quantitative knowledge using fuzzy rules and is described as a ‘hybrid’ neural network. The ‘Safety Lifecycle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of National Aviation University

سال: 2004

ISSN: 2306-1472,1813-1166

DOI: 10.18372/2306-1472.20.1016